Program: FE (All Branches)

Curriculum Scheme: Revised 2012

Examination: First Year Semester II

Course Code: FEC 202
Time: 1 hour

Course Name: Applied Physics II
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Find the thickness of the soap film which appears yellow ($\lambda=5896 \mathrm{~A}^{\circ}$) in reflection when it is illuminated by white light at an angle of 45°. Given refractive index of the film $=1.33$
Option A:	$1250 \mathrm{~A}^{\circ}$
Option B:	$1600 \mathrm{~A}^{0}$
Option C:	$1308 \mathrm{~A}^{0}$
Option D:	$2000 \mathrm{~A}^{\circ}$
Q2.	SQUID is an application of
Option A:	Semiconducting materials
Option B:	Nano material
Option C:	Superconducting materials
Option D:	Bio materials
Q3.	Calculate the acceptance angle for an optical fibre. Given that the refractive indices of the core and the cladding are 1.45 and 1.40 respectively.
Option A:	$22.17{ }^{\circ}$
Option B:	10.55°
Option C:	40.66°
Option D:	$35.56{ }^{\circ}$
Q4.	Find the missing order for a double-slit Fraunhofer Diffraction pattern if the slit widths are 0.2 mm separated by 0.6 mm .
Option A:	$1^{\text {st }}, 5^{\text {th }}, 9^{\text {th }}, \ldots$.
Option B:	$2^{\text {nd }}, 6^{\text {th }}, 10^{\text {th }}, \ldots$
Option C:	$3^{\text {rd }}, 7^{\text {th }}, 11^{\text {th }}, \ldots$.
Option D:	$4^{\text {th }}, 8^{\text {th }}, 12^{\text {th }}, \ldots$
Q5.	To prepare nanomaterials, which approaches are used in nanotechnology
Option A:	Right down approach
Option B:	Top down approach
Option C:	Bottom up approach
Option D:	Both B \& C

Q6.	Calculate the minimum number of lines required on a grating that can just resolve the tow sodium lines $\lambda_{1}=5890 \mathrm{~A}^{\circ}$ and $\lambda_{2}=5893 \mathrm{~A}^{0}$
Option A:	Minimum of 328 lines required
Option B:	Minimum of 250 lines required
Option C:	Minimum of 200 lines required
Option D:	Minimum of 150 lines required
Q7.	An electron has a speed of $400 \mathrm{~m} / \mathrm{s}$ with uncertainty of 0.01%. Find the accuracy in its position.
Option A:	$2.9 \times 10^{-5} \mathrm{~m}$
Option B:	$2.9 \times 10^{-2} \mathrm{~m}$
Option C:	$2.9 \times 10^{-3} \mathrm{~m}$
Option D:	2.9 m
Q8.	Lissajous figures are the \qquad patterns traced by the electron beam acted upon by two mutually perpendicular \qquad signals
Option A:	Amplitude, cosine
Option B:	Position, standing
Option C:	Frequency, deflection
Option D:	Displacement, sinusoidal
Q9.	Fringes of equal thickness are observed in a thin glass wedge of refractive index 1.52. The fringe spacing is 1 mm and wavelength of light is $5893 \mathrm{~A}^{0}$. Calculate the angle of wedge.
Option A:	0.0190 degree
Option B:	0.0111 degree
Option C:	0.0050 degree
Option D:	0.0120 degree
Q10.	By observing the diffraction patter, the two images are said to be just resolved when \qquad
Option A:	The central maxima of one image coincide with central maxima of the other
Option B:	The central maxima of one do not coincide with central maxima of the other
Option C:	The central maxima of one image coincides with the first minimum of the other
Option D:	The central maxima of one image do not coincide with the first minimum of other
Q11.	Which of the following are true for electron microscopy?
Option A:	specimen should be thin and dry
Option B:	image is obtained on a phosphorescent screen
Option C:	electron beam must pass through evacuated chamber
Option D:	specimen should be thin and dry, image is obtained on a phosphorescent screen and electron beam must pass through evacuated chamber
Q12.	Non-existence of electrons in a nucleus is an application of

Option A:	Time independent Schrodinger equation
Option B:	Heisenberg uncertainty principle
Option C:	De-Broglie hypothesis
Option D:	Time dependent Schrodinger equation
Q13.	What is the need to achieve population inversion?
Option A:	To excite most of the atoms
Option B:	To bring most of the atoms to ground state
Option C:	To achieve stable condition
Option D:	To reduce the time of production of laser
Q14.	What will be the order of the dark ring which will have double the diameter of the $40^{\text {th }}$ dark ring?
Option A:	60
Option B:	160
Option C:	56
Option D:	100
Q15.	In an optical fiber, the concept of numerical aperture is applicable in describing the ability of \qquad
Option A:	Light Collection
Option B:	Light Scattering
Option C:	Light Dispersion
Option D:	Light Polarization
Q16.	C.R.O gives
Option A:	actual representation
Option B:	visual representation
Option C:	approximate representation
Option D:	incorrect representation
Q17.	In the region between $\mathrm{H}_{\mathrm{c} 1}$ and $\mathrm{H}_{\mathrm{c} 2}$ the material is magnetically in mixed state but electrically in a superconducting state

Option A:	Superonducting state
Option B:	Normal state
Option C:	Vortex state
Option D:	Actual state
Q18.	The thickness and the refractive index of the anti-reflecting coating film are determined by
Option A:	Phase condition
Option B:	Amplitudes condition
Option C:	Option A \& B
Option D:	Testing the surface condition
Q19.	The signal attenuation or loss in an optical fiber is $2 \mathrm{~dB} / \mathrm{km}$. Calculate the mean optical power launched into the fibre of length 1 km , if the mean optical power at the fiber is $20 \mu \mathrm{~W}$.
Option A:	$25.6 \mu \mathrm{~W}$
Option B:	$31.7 \mu \mathrm{~W}$
Option C:	$69 \mu \mathrm{~W}$
Option D:	$25 \mu \mathrm{~W}$
Q20.	Determine the magnetic field required to bend a beam consisting of electrons of speed $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$ in a circle of radius 5 cm .
Option A:	$2.5 \times 10^{-3} \mathrm{wb} / \mathrm{m}^{2}$
Option B:	$1.5 \times 10^{-3} \mathrm{wb} / \mathrm{m}^{2}$
Option C:	$3.4 \times 10^{-3} \mathrm{wb} / \mathrm{m}^{2}$
Option D:	$4.6 \times 10^{-3} \mathrm{wb} / \mathrm{m}^{2}$
Q21.	Which among the following helps us in getting a three-dimensional picture of the specimen?
Option A:	Transmission Electron Microscope
Option B:	Scanning Electron Microscope
Option C:	Compound Microscope
Option D:	Simple Microscope
Q22.	Find the lowest energy of a neutron within a nucleus of dimension $10^{-14} \mathrm{~m}$ given mass of a neutron $=1.97 \times 10^{-27} \mathrm{~kg}$
Option A:	$3.29 \times 10^{-13} \mathrm{~J}$
Option B:	$6.50 \times 10^{-13} \mathrm{~J}$
Option C:	$1.50 \times 10^{-13} \mathrm{~J}$
Option D:	$4.60 \times 10^{-13} \mathrm{~J}$
Q23.	He-Ne Laser is lasing scheme.
Option A:	Four level
Option B:	Three level
Option C:	Two level
Option D:	One level

Q24.	In a Newton's rings experiment, the diameter of 5 th the radius ring is 0.336 cm .find $5890 \mathrm{~A}^{\circ}$
Option A:	45.84 cm
Option B:	56.50 cm
Option C:	30.25 cm
Option D:	15.20 cm
Q25.	Matter waves travels
Option A:	With the same speed of light
Option B:	Faster than light
Option C:	Slower than light
Option D:	None of the above

