Program: FE (All Branches)

Curriculum Scheme: Revised 2012

Examination: First Year Semester II

Course Code: FEC 202 Time: 1 hour

Course Name: Applied Physics II Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks.

Q1. Find the thickness of the soap film which appears yellow (λ =5896 A°) in reflection when it is illuminated by white light at an angle of 45°. Given refractive index of the film =1.33 1250 A^o Option A: 1600 A^o Option B: 1308 A^o Option C: 2000 A^o Option D: Q2. SQUID is an application of Semiconducting materials Option A: Option B: Nano material Superconducting materials Option C: Option D: **Bio** materials Q3. Calculate the acceptance angle for an optical fibre. Given that the refractive indices of the core and the cladding are 1.45 and 1.40 respectively. 22.17° Option A: 10.55° Option B: 40.66° Option C: 35.56° Option D: Q4. Find the missing order for a double-slit Fraunhofer Diffraction pattern if the slit widths are 0.2 mm separated by 0.6 mm. Option A: 1st, 5th, 9th, 2nd, 6th, 10th, ... Option B: 3rd, 7th, 11th, Option C: 4th, 8th, 12th, ... Option D: Q5. To prepare nanomaterials, which approaches are used in nanotechnology Option A: **Right down approach** Option B: Top down approach Option C: Bottom up approach Option D: Both B & C

Q6.	Calculate the minimum number of lines required on a grating that can just
	resolve the tow sodium lines λ_1 =5890 A^o and λ_2 =5893 A^o
Option A:	Minimum of 328 lines required
Option B:	Minimum of 250 lines required
Option C:	Minimum of 200 lines required
Option D:	Minimum of 150 lines required
Q7.	An electron has a speed of 400 m/s with uncertainty of 0.01%. Find the accuracy
	in its position.
Option A:	2.9 x 10 ⁻⁵ m
Option B:	2.9 x 10 ⁻² m
Option C:	2.9 x 10 ⁻³ m
Option D:	2.9 m
Q8.	Lissajous figures are the patterns traced by the electron
	beam acted upon by two mutually perpendicular signals
Option A:	Amplitude, cosine
Option B:	Position, standing
Option C:	Frequency , deflection
Option D:	Displacement, sinusoidal
Q9.	Fringes of equal thickness are observed in a thin glass wedge of refractive index
	1.52. The fringe spacing is 1mm and wavelength of light is 5893 A ^o . Calculate the
	angle of wedge.
Option A:	0.0190 degree
Option B:	0.0111 degree
Option C:	0.0050 degree
Option D:	0.0120 degree
Q10.	By observing the diffraction patter, the two images are said to be just resolved
	when
Option A:	The central maxima of one image coincide with central maxima of the other
Option B:	The central maxima of one do not coincide with central maxima of the other
Option C:	The central maxima of one image coincides with the first minimum of the
	other
Option D:	The central maxima of one image do not coincide with the first minimum of
	other
Q11.	Which of the following are true for electron microscopy?
Option A:	specimen snould be thin and dry
Option B:	image is obtained on a phosphorescent screen
Option C:	electron beam must pass through evacuated chamber
Option D:	specimen should be thin and dry, image is obtained on a phosphorescent
	screen and electron beam must pass through evacuated chamber
012	
Q12.	Non-existence of electrons in a nucleus is an application of

Option A:	Time independent Schrodinger equation
Option B:	Heisenberg uncertainty principle
Option C:	De-Broglie hypothesis
Option D:	Time dependent Schrodinger equation
Q13.	What is the need to achieve population inversion?
Option A:	To excite most of the atoms
Option B:	To bring most of the atoms to ground state
Option C:	To achieve stable condition
Option D:	To reduce the time of production of laser
Q14.	What will be the order of the dark ring which will have double the diameter of
	the 40 th dark ring?
Option A:	60
Option B:	160
Option C:	56
Option D:	100
•	
Q15.	In an optical fiber, the concept of numerical aperture is applicable in describing
-	the ability of
Option A:	Light Collection
Option B:	Light Scattering
Option C:	Light Dispersion
Option D:	Light Polarization
•	
Q16.	C.R.O gives
Option A:	actual representation
Option B:	visual representation
Option C:	approximate representation
Option D:	incorrect representation
Q17.	In the region between H_{c1} and H_{c2} the material is magnetically in mixed state but
	electrically in a superconducting state
	, , , ,
	1
	1
	4#8
	H_{c1} H_{c} H_{c2}
	offence metrose new n ²

Option A:	Superonducting state
Option B:	Normal state
Option C:	Vortex state
Option D:	Actual state
Q18.	The thickness and the refractive index of the anti-reflecting coating film are
	determined by
Option A:	Phase condition
Option B:	Amplitudes condition
Option C:	Option A & B
Option D:	Testing the surface condition
Q19.	The signal attenuation or loss in an optical fiber is 2 dB/km. Calculate the mean
	optical power launched into the fibre of length 1 km, if the mean optical power
	at the fiber is 20 μW.
Option A:	25.6μW
Option B:	31.7 μW
Option C:	69 μW
Option D:	25 μW
Q20.	Determine the magnetic field required to bend a beam consisting of electrons of
	speed 3 x 10' m/s in a circle of radius 5 cm.
Option A:	2.5 x 10 ⁻³ wb/m ²
Option B:	1.5x 10 ⁻³ wb/m ²
Option C:	3.4 x 10 ⁻³ wb/m ²
Option D:	4.6 x 10 ⁻³ wb/m ²
Q21.	Which among the following helps us in getting a three-dimensional picture of
	the specimen?
Option A:	Transmission Electron Microscope
Option B:	Scanning Electron Microscope
Option C:	Compound Microscope
Option D:	Simple Microscope
Q22.	Find the lowest energy of a neutron within a nucleus of dimension 10 ⁻¹⁴ m given
	mass of a neutron= 1.97 x 10 ⁻²⁷ kg
Option A:	3.29 x 10 ⁻¹³ J
Option B:	6.50 x 10 ⁻¹³ J
Option C:	1.50 x 10 ⁻¹³ J
Option D:	4.60 x 10 ⁻¹³ J
Q23.	He-Ne Laser is lasing scheme.
Option A:	Four level
Option B:	Three level
Option C:	Two level
Option D:	One level

Q24.	In a Newton's rings experiment, the diameter of 5 th dark ring is 0.336 cm .find the radius of curvature of the plano-convex lens if the wavelength of light used is
	5890 A ^o
Option A:	45.84 cm
Option B:	56.50 cm
Option C:	30.25 cm
Option D:	15.20 cm
Q25.	Matter waves travels
Option A:	With the same speed of light
Option B:	Faster than light
Option C:	Slower than light
Option D:	None of the above